190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Su	bje	ct:

Statistics

Paper: S2

FINAL

k

05

Question Number	Scheme M	arks		
1.	(a) $P(R=5) = P(R \in 5) - P(R \leq 4) = 0.7216 - 0.5755$ Can be implied 1 = 0.2061 Awar 0.2061 (oR: ${}^{5}C_{5}(0.3)^{5}(0.7)^{10} = 0.206130)$ (b) $P(S=5) = 0.2414 - 0.1321 = 0.1093$ Accept (oR: $\frac{7.65 - 7.5}{5!} = 0.10937459)$ Accept (c) $P(T=5) = 0$	41 B t	(2) (1) (1)	
2.	(e) (i) A collection of individuals or items	ві В1	(د)	
	 (6) Not always possible to keep this list up to date population (c) (i) eg:- Purpils in year 12 - small easily listed toughter Population known & easily accessed (ii) Students in a University - have not easily listed 	В1 В1 В1 В1	(1)	-
	Population known but Too True	BI	(1)	
	(c) SR (i) Definition of census by example B1 (ii) Vankle B1			

PMT

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:

Statistics

Paper: S2

Scheme	Marks
(a) Continuous uniform/Rectangular	Bi
$f(x) = \begin{cases} \frac{1}{2}, & 0 \le x \le l \\ 0 & otherwise \end{cases}$	B1 B1 (3)
(1) $P(X < \frac{1}{2}L) = \frac{1}{L} \times \frac{L}{3} = \frac{1}{3}$ Thur $\frac{1}{2} \times \frac{1}{3}$	MIAI (2)
(c) $E(x) = \pm L$	B1 (1)
(d) $\ell \left(B_0 H_1 \times \frac{1}{3} \ell \right) = \left(\frac{1}{3} \right)^2 = \frac{1}{9}$ (b)	MI AI/(2)
(a) Probability of success/failure is constant Trials are independent	BI BI (2)
(b) Let prepresent propertion of students who can distinguish detendents brands) BI
×= 0.01; CR: 2 > 2.3263 2.3263	B 1
np=25j npg=22.5 bok Ca-be instied	81
$3 = \frac{39.5 - 25}{\sqrt{22.5}} = 3.05 \text{ be} \qquad \text{Stundusdischion} \\ \text{south $\pm 0.5 \times 10^{-1}$ for 1.5}$	MI
Aurt 3.01	A1 A1 (6)
(c) sg:- np, nar box 75 - from ro acceptable p close to 0.5 - not true, assumption not met success/failure not clear out necessarily	נג) ⁸ ו צו
	(1) $P(x < \frac{1}{2}L) = \frac{1}{L}x\frac{L}{3} = \frac{1}{3}$ This $\frac{1}{2}x\frac{L}{3}$ (2) $E(x) = \frac{1}{2}L$ (3) $P(Both < \frac{1}{2}L) = (\frac{1}{3})^2 = \frac{1}{3}$ (4) $P(cbability of success/failure is constant)$ Trials are independent (4) Let p represent propertion of students who can distinguish determent Ho: $p = 0.1$; Hi: $p > 0.1$ v = 0.01; CR: $p > 2.3263np = 25$; $npq = 22.5a = \frac{39.5 - 25}{\sqrt{22.5}} = 3.0568Rijeet Ho: claim canot be accepted Based on clearRijeet$ Ho: claim canot be accepted Based on clear p = np, nq both 75 - from so excepted he p = dow to 0.5 - not true, assufficien ust met

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:

Statistics

Paper: S2

Question Number	Scheme	Marks	
5.	Let X représent the number y defective articl $\therefore x \sim B(10, 0.032)$	ม	
		Use of "Crpfq" All correct AW RT 0'0355	M) A1 A1 (3)
	(b) harge n small $\beta \Rightarrow Poisson approximationwith \lambda = 100 \times 0.031 \approx 3.2$	Seen or implied	81
	$P(\chi_{4}) = P(\chi_{4}) = P(\chi_{1}) = P(\omega) + P(\omega) + P(\omega) + P(\omega) + P(\omega)$	f (X < 3) stated or implied	MI
	$\frac{112}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} = \frac{-3 \cdot 2}{2} \left\{ 1 + 3 \cdot 2 + \frac{(3 \cdot 2)^2}{12} + \frac{(3 \cdot 2)^3}{12} \right\}$	All correct	AI
	= 0.602519	Awero.bod	AI (4)
	(c) np & ng bok >5 => Normal approximation	Nappiex	Mı
	with np = 32 and npy = 30.976	por	A \
	$P(X > 42) \approx P(Y > 42.5)$ where $Y = M(32, 30)$	·976) Student	Mι
	$= P(Z > \frac{42.5 - 32}{\sqrt{30.976}})$	their np, vafy All correct	A 1
	= P(2 > 1.8845)	Awrt 1.69	Ą۱
	= 0.0294	0.0294-0.0297	A1 (G)

PMT

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject:

Statistics

Paper: S2

Question Number	Scheme	Marks
6.	het X represent number of accidents/month : X~Po(3)	BI
	(a) $P(X > 4) = 1 - P(X \le 4); = 1 - 0.8513 = 0.1647$	MI; AI (3)
	(b) het Yripreint number of accidents in 3 worther .: Yn Po (3x3=9) Can be in	applied B1
	P(Y>4)= 1-0.0550 = 0.9450	B1 (2)
	(c) Ho: $\lambda = 3$; H: $\lambda = 3$ $\alpha = 0.05$ $\beta = 0.05$ $\beta = 0.05$ $\beta = 0.05$	L BI
-	$P(X \le 1 \lambda = 3) = 0.1991; > 0.05$	81; MI
	in houfficient evidence to cupp out the claim that	AIV (4)
	(NB: CR: X =0; X=1 not in CK; Same conclusion = 0,	, AH)
	(d) Ho: $\lambda = 24\times3=72$; H1: $\lambda < 72$ Can be implied λ both 1	²⁷² 81 لرمبلو 18
	K= 0.03 - CE: 8 = 1.177 -1.6	449 BI
	Using Normal approximation with M=J1= 72 Can bein	aplied BI
	$g = \frac{55 \cdot 5 - 72}{\pm -1 \cdot 94454}$ Stand =	with M
	Since -1.944 is in the CR, the 1s rejected. There Cartos	A A A A A A A A
i		idence
	the number of accidents.	
1		

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Su	hin	~
~~		

Statistics

Paper: S2

Question Number	Scheme	M	arks
7.	(a) $k \int (-x^2 + 5x - 4) dx = 1$	Use of f(x) dx=1	MI
	$: k \left[-\frac{x^{2}}{3} + \frac{5x^{2}}{2} - 4x^{2} \right]^{4} = 1 $	All correct inty" with limits	Aı
	$* \Rightarrow k = \frac{2}{3} $	C.2.0	A1 (3)
	(b) $E(X) = \int_{-2/9}^{4} (-x^3 + 5x^4 - 4x) dx$	Use g Jxf(x)dx	MI
	$e^{-\frac{2}{9}}\left[-\frac{\pi^{4}}{4}+\frac{5\pi^{2}}{3}-\frac{4\pi^{2}}{1}\right]_{1}^{4}$	Correct integ-	A 1
	= 5/2	کم ک	AI (3)
	(c) $\frac{d}{dx}f(x) = \frac{2}{g}(-2x+5) = 0 : \Rightarrow Mode$ (Se: 5/ only; no work	= 5/1 Diff- 4 fai) -3 Bil	M1; A1 (1)
	(d) $F(x) = \int^{1} \frac{1}{49} (-x^{2} + 5x - 4) dx$		Mi
	$= \left[\frac{2}{9}\left(-\frac{\pi^{3}}{3}+\frac{5\pi^{2}}{2}-4\pi\right]^{2}\right]^{2}$	Integt with limit	A1
	$= \frac{2}{9} \left\{ -\frac{1}{3} + \frac{510^{1}}{2} - 410 + \frac{11}{1} \right\}$	auf	A.
	$F(x) = \begin{cases} 0 \\ \frac{2}{9} \left\{ -\frac{x^3}{5} + \frac{5x^4}{5} - 4x + \frac{11}{5} \right\}$	xx1 xx1; x>4 1≤x=4 x>4	$\begin{array}{c} \mathcal{B}_{1} \\ \mathcal{B}_{1} \end{array} \left(\mathbf{s} \right) \end{array}$
	(e) $P(x = 2.5) = F(2.5) = 0.5$	F (2:5) or integral et	
	(f) Median = 2.5; Distribution is cymene		B1;B1(2) cao cao

PMT